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Three-dimensional ° ow near surface distortions
for the compensation regime

By I. I. Lipatov1 an d I. V. Vinogradov2

1Central Aerohydrodynamic Institute, Zhukovsky-3,
Moscow region, 140160, Russia

2Faculty of Aeronautics, Moscow Institute of Physics and Technology,
16 Gagarin Street, Zhukovsky, Moscow region, 140160, Russia

Flow past an isolated, small, three-dimensional roughness located on a plate is inves-
tigated theoretically and numerically. Depending on roughness scales, there are di¬er-
ent local disturbed ®ow regimes. The so-called `compensation regime’ is characterized
by conservation of boundary-layer thickness for which the ®ow near the roughness
does not interact with the external inviscid ®ow. A spectral numerical method is
used to calculate the corresponding three-dimensional boundary problem.

Keywords: ° uid dynamics; high Reynolds number; surface distortions;
three-dimensional boundary-layer ° ows

1. Introduction

Phenomena arising in the ®ow near surface distortions play a signi­ cant role in
geophysical ®ows, in external and internal aerodynamics, etc. Modern trends in
boundary-layer ®ow control give the basis of a more detailed analysis. The laminar-
turbulent transition, skin friction and heat transfer distributions depend strongly on
surface irregularities. By means of controlled unsteady motion of surface irregularities
the transition may be delayed or boundary-layer separation may be suppressed.

Di¬erent local ®ow regimes are described by Smith (1973, 1976), Bogolepov & Nei-
land (1971), Bogolepov (1986), Duck & Burggraf (1986), Bogolepov & Lipatov (1985)
and Sykes (1980). We do not aim to discuss all aspects of locally disturbed ®ows. A
more comprehensive list of publications is presented, for example, by Smith & Wal-
ton (1998) and by Roget et al . (1998). Investigations of two-dimensional ®ows near
surface distortions provided by Bogolepov & Neiland (1971), analysis of pipe®ows
done by Smith (1976) and strati­ ed ®ows studies made by Sykes (1980) allow us to
­ nd the so-called compensation regime. This regime is characterized by conservation
of boundary-layer thickness and corresponds to a variety of disturbed ®ows.

At the same time the numerical solutions for nonlinear problems were obtained
by Sykes (1980) only for ®ows periodical in the transverse direction. Not all the
problems were solved from a theoretical point of view. This paper is devoted to the
analysis of mathematical and physical aspects of locally disturbed ®ows. The aim
is to describe the main processes responsible for disturbance propagation and to
formulate a well-posed mathematical problem describing the compensation regime.

This paper is also devoted to the numerical investigation of the ®ow near three-
dimensional surface distortion for the compensation regime.
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2. Problem formulation

The ®ow near the ®at plate is considered. It is supposed that the small surface
distortion is located on the bottom of a laminar two-dimensional boundary layer at
a distance l from the ®at plate leading edge. It is supposed that the external ®ow is
uniform subsonic or supersonic viscous ®ow (M 2

1 ¡ 1) ¹ 1 for large but subcritical
Reynolds numbers Re 1 = » 1 u 1 l=· 1 = "¡2; » , u and · are the density, the velocity
and the dynamical viscosity coe¯ cient, respectively; the index 1 corresponds to
the values in the external ®ow. Cartesian coordinates are introduced, where X , Y
and Z are the streamwise, normal and spanwise axes, respectively. We will use the
following de­ nitions below: lt=u 1 , lx, ly, lz, u 1 u, u 1 v, u 1 w, » 1 u2

1 , » 1 » , · 1 · for
time, coordinates, velocity components, pressure, density and dynamical viscosity
coe¯ cient, respectively. It is supposed that the distortion has the scale-thickness a,
length b and width c.

Let us consider the ®ow near the local distortion having comparable length and
width b ¹ c. It is evident that the limiting problems for asymptotically di¬erent
values characterizing the width and the length may be obtained as a result of the
corresponding limiting procedure from the general mathematical problem investi-
gated.

It is also supposed that the characteristic length and the width of the distortion
are much larger than the undisturbed boundary-layer thickness in the vicinity of
the distortion. In accordance with the matched asymptotic expansions method, we
need to introduce the region 1 having asymptotically equal scales in all dimensions.
It may be shown for small thickness values that the disturbed ®ow is characterized
by equal values of disturbances for velocity components, pressure and density, which
are determined by the vertical velocity value on the external edge of the boundary
layer. This required value may be estimated as the ratio of characteristic height to
characteristic length:

¢p ¹ v ¹ a=b: (2.1)

This estimate allows us to determine the boundary-layer thickness change induced
by the pressure disturbance. The longitudinal velocity near the distortion in the
undisturbed boundary layer at a height comparable with that of the distortion is
determined by the following expression:

u ¹ a=": (2.2)

If the distortion induces nonlinear longitudinal velocity changes, then the following
relations are valid,

u ¹ ¢u ¹ ¢p1=2; (2.3)

y ¹ ¢y ¹ "¢p1=2; (2.4)

where the last relation determines the nonlinear region thickness. The vertical veloc-
ity on the external boundary-layer edge is induced both by the distortion height and
the change in boundary-layer thickness. It may then be shown that the total change
in boundary-layer thickness is determined to leading order by the region located
near the wall where streamlines have nonlinear changes in longitudinal velocity. The
pressure disturbance estimate may be written in the form:

¢p ¹ (a=b) + "¢p1=2=b: (2.5)
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As was shown by Bogolepov & Neiland (1971), this relation is valid only if

b=a ¹ b2="2: (2.6)

The other limit, corresponding to

b2="2 ½ b=a; (2.7)

leads to the discrepancy that the change in boundary-layer thickness induces a much
larger pressure disturbance than the original pressure disturbance leading to the
thickness change. The problem may be resolved if disturbances in the external ®ow
are absent (to leading order). Therefore, instead of relation (2.5), the following com-
pensation relation (zero change in total boundary-layer thickness) will be used:

a=b ¹ "¢p1=2=b; (2.8)

¢p ¹ a2="2: (2.9)

It is necessary to also take into account equal orders of viscosity and inertia forces in
nonlinearly disturbed region. This condition follows from the longitudinal momentum
equation analysis,

a ¹ "b1=3: (2.10)

All estimates obtained earlier lead to the inequality,

b ½ "3=4; (2.11)

determining the length of distortion when compensation regime take place. The
equality in (2.11) corresponds to the free interaction regime.

The conservation of boundary-layer thickness may be written in the form,

u = Ay"¡1 + o(1); (2.12)

where A is the non-dimensional skin friction on the surface in the undisturbed bound-
ary layer upstream from the distortion. This condition follows from the matching
procedure applied to solutions in the region 2 (the main part of the boundary-layer
®ow) and in the region 3 (nonlinearly disturbed region near the wall).

3. Boundary value problem

In region 3, which has length-scales x ¹ b, y ¹ "b1=3, z ¹ c, the following asymptotic
expansions are introduced:

x = bx3; y = "b1=3 · 1=3
w » ¡1=3

w A¡1=3y3; z = cz3; (3.1 a)

u = A1=3 · 1=3
w » ¡1=3

w b1=3u3 + ; (3.1 b)

v = A1=3 · 2=3
w » ¡2=3

w "b¡1=3v3 + ; (3.1 c)

w = A2=3 · 1=3
w » ¡1=3

w b¡2=3cw3 + ; (3.1 d)

p = 1=® M 2
1 + A4=3 · 2=3

w » 1=3
w b2=3p3 + ; » = » w + ; · = · w + : (3.1 e)
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The limiting relations, a ¹ "b1=3, "3=2 < b < "3=4, c ¹ b, then correspond to the
following equations, deduced from the Navier{Stokes equations for leading terms in
(3.1):

@u3

@x3

+
@v3

@y3

+
@w3

@z3
= 0; (3.2 a)

u3
@u3

@x3

+ v3
@u3

@y3

+ w3
@u3

@z3

+
@p3

@x3
=

@2u3

@y2
3

; (3.2 b)

@p3

@y3

= 0; (3.2 c)

u3
@w3

@x3

+ v3
@w3

@y3

+ w3
@w3

@z3

+ D
@p3

@z3

=
@2w3

@y2
3

; (3.2 d)

where the similarity parameter D = b2=c2 is determined by the ratio of length to
width. Boundary conditions include the usual conditions for the three-dimensional
boundary layer along with total zero thickness change condition,

u3 = v3 = w3 = 0 at y3 = hf (x3; z3); (3.3 a)

u3 ! y3; v3; w3; p3 ! 0 as x3 ! ¡ 1; z3 ! §1; (3.3 b)

u3 ! y3; w3 ! 0 as y3 ! 1; (3.3 c)

where h = A1=3 ·
¡1=3
w »

1=3
w ab¡1=3"¡1 (the subscripts are suppressed below).

The boundary-value problem (3.2){(3.3) contains two similarity parameters, D
and h. When the ­ rst parameter tends to zero, problem (3.2){(3.3) is reduced to the
boundary-value problem describing two-dimensional ®ow.

The second similarity parameter is proportional to the inertia and viscosity forces
ratio in region 3. For large h values, the disturbed ®ow near the distortion is inviscid
at leading order; correspondingly, small h values are connected with the in®uence of
the viscosity force and with linearly disturbed ®ow near the distortion.

4. Linear solution

Small values of h correspond to a linear solution which may be sought in the form,

u = y + hU + ; v = hV + : : : ; p = hP + ; w = hW + :
(4.1)

Corresponding linearized equations for D = 1 have the form,

y
@U

@x
+ V +

@P

@x
=

@2U

@y2
; (4.2 a)

y
@W

@x
+

@P

@z
=

@2W

@y2
; (4.2 b)

@U

@x
+

@V

@y
+

@W

@z
= 0; (4.2 c)

@P

@y
= 0: (4.2 d)
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Equations (4.2) may be transformed to the following equations:

y
@S

@x
=

@2S

@y2
; (4.3 a)

¡ @S(x; 0; z)

@y
=

@2P

@x2
+

@2P

@z2
; (4.3 b)

1

0

S dy = ¡ @f

@x
; (4.3 c)

where S = @2V=@y2. It may be deduced from the analysis of (4.3) that a non-trivial
solution for the function S exists if f 6= 0 or if there is a non-zero convective derivative
of the function S (the wake downstream from the distortion). Then for an arbitrary
surface point, excluding the distortion and its wake, the solution of this equation has
the form,

S(x; y; z) = 0; V (x; y; z) = 0: (4.4)

For the velocity components the following problem may be deduced,

y
@U

@x
+

@P

@x
=

@2U

@y2
; (4.5 a)

y
@W

@x
+

@P

@z
=

@2W

@y2
; (4.5 b)

@U

@x
+

@W

@z
= 0; (4.5 c)

@P

@y
= 0; (4.5 d)

which describes the quasi-two-dimensional ®ow outside the distortion and its wake.
Equations (4.5) also follow from the analysis made by Smith (1976) and by Bogolepov
& Lipatov (1985).

5. Analysis of the nonlinearly disturbed ° ow

Wang (1971) described how to analyse boundary-layer equations. Following Wang,
we will introduce a subcharacteristic surface « (x; y; z) and will transform the inde-
pendent variables,

x; y; z ! « (x; y; z); y; z: (5.1)

As a result of this analysis we may obtain the following equation, which determines
the subcharacteristics,

@«

@y

3
@«

@x

2

+
@«

@z

2

u
@«

@x
+ v

@«

@y
+ w

@«

@z
= 0: (5.2)

The ­ rst multiplier corresponds to the characteristics of the original equation. The
second multiplier corresponds to the elliptical type of equation for the pressure,
and the third multiplier states that the vorticity (velocity) ­ eld is controlled by
streamlines. This form determines the conditions needed to formulate a well-posed
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boundary-value problem for the three-dimensional boundary layer with compensa-
tion interaction regime.

Thus there are three main mechanisms of disturbance propagation in the ®ow
corresponding to that near a distortion. The ­ rst mechanism is di¬usion, in which
disturbances propagate in a normal direction with in­ nite speed. The second mech-
anism is determined by pressure, in which disturbances also propagate with in­ nite
speed. The third mechanism is controlled by convection. All these mechanisms are not
only connected with physical processes but are also connected with the mathemati-
cal formulation of the problem. The mathematical problem will be well-posed if all
mechanisms of disturbance propagation are precisely taken into account, for example,
in the numerical method. Otherwise, some form of instability may be encountered in
the numerical procedure. Analysing the system of equations, we may conclude that,
as in the linear case, there is a region of zero vertical velocity and a region where
this velocity is non zero.

Let us suppose that, as in the linear case, there is a region of ®ow with zero vertical
velocity near a ­ nite distortion. Then the disturbed ®ow is described by the following
equations:

u
@u

@x
+ w

@u

@z
+

@p

@x
=

@2u

@y2
; (5.3 a)

u
@w

@x
+ w

@w

@z
+

@p

@z
=

@2w

@y2
; (5.3 b)

@u

@x
+

@w

@z
= 0: (5.3 c)

Equations (5.3) may be transformed as follows,

u
@!y

@x
+ w

@!y

@z
=

@2!y

@y2
; (5.4)

where

!y =
@u

@z
¡ @w

@x
:

Equation (5.4) is accompanied by uniform boundary conditions,

!y = 0 at y = 0; (5.5)

!y ! 0 as y ! 1: (5.6)

Then a zero solution for vorticity component !y exists for the region of ®ow analysed
if

!y = 0: (5.7)

Applying the divergence operator to the equations (5.3) allows us to obtain the
following equation:

@u

@x

@u

@x
+ 2

@w

@x

@u

@z
+

@w

@z

@w

@z
= ¡ @2p

@x2
¡ @2p

@z2
: (5.8)

Equations (5.3) and (5.4) allow to transform (5.7) as follows:

@w

@x

2

+
@w

@z

2

= ¡ 1
2
¢p: (5.9)
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Only the zero solution for the velocity component then exists. But this conclusion
contradicts equation (5.3 b). Therefore, in the nonlinear case, the suggestion that the
normal velocity is zero in part of the disturbed ®ow is not true. This suggestion is
ful­ lled only for the linear case.

6. Numerical solution

The spectral method originally suggested by Duck & Burggraf (1986) was used to
solve the problem (3.2){(3.3). Prandtl’s transposition,

~x = x; ~y = y ¡ f(x; z); ~z = z; ~u = u ¡ ~y; (6.1 a)

~v = v ¡ u
@f

@x
¡ w

@f

@z
; ~w = w; ~p = p; (6.1 b)

leads to the problem including unchanged equations and the following boundary
conditions:

u = v = w = 0 at y = 0; (6.2 a)

u ! 0; v; w; p ! 0 as x ! ¡ 1 and as z ! §1; (6.2 b)

u ! f(x; z); w ! 0 as y ! 1: (6.2 c)

Fourier transforms in the x- and z-directions give the following expression for the
longitudinal velocity:

u ¤ ¤ (k; l; y) =
1

(2 º )2

+ 1

¡ 1

+ 1

¡ 1
u(x; y; z) exp( ¡ ikx ¡ ilz) dx dz: (6.3)

The system to be solved is written then as follows:

iku ¤ ¤ + v ¤ ¤ 0 + ilw ¤ ¤ = 0; (6.4 a)

u ¤ ¤ 00 ¡ ikyu¤ ¤ ¡ v ¤ ¤ ¡ ikP = u
@u

@x
+ v

@u

@y
+ w

@u

@z

¤ ¤
= R ¤ ¤

1 ; (6.4 b)

w ¤ ¤ 00 ¡ ikyw ¤ ¤ ¡ ilP ¤ ¤ = u
@u

@x
+ v

@u

@y
+ w

@u

@z

¤ ¤

= R ¤ ¤
2 : (6.4 c)

The boundary conditions include

u ¤ ¤ = v ¤ ¤ = w ¤ ¤ = 0 at y = 0; (6.5 a)

u ¤ ¤ ! F ¤ ¤ ; w ¤ ¤ ! 0 as y ! 1: (6.5 b)

The following procedure is mainly the same as that described by Duck & Burggraf
(1986). The distortion analysed has the geometry f(x; z) = h exp( ¡ (x2 + z2)). The
numerical grid includes NX £ NY £ NZ = 64 £ 26 £ 32 nodes, with the steps
for corresponding coordinates ¢x = ¢z = 0:3, ¢y = 0:4, D = 1. To check out the
accuracy of results, the grid NX£NY £NZ = 128£26£64 was used along with non-
uniform spacing in the Y -direction. The results obtained on both grids were almost
the same. To have a uniformly valid solution of linearized equations, integration in
spectral space was ful­ lled by analytical presentation of functions near the singular
point k; l = 0.
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h = - 3
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h = - 1
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Figure 1. Pressure distributions in the symmetry plane.

h = - 3

h = - 2

h = - 1

x
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- 0.4
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0.8

1.2

1.6

t x

Figure 2. Longitudinal skin friction distributions in the symmetry plane.

In ­ gure 1 the pressure disturbance distributions are presented in the symmetry
plane for di¬erent h values. The negative h values correspond to the hollow on the
surface. It may be seen that the distortion depth increase leads to the maximum
pressure disturbance rise. The distributions presented are characterized by two local
minima located downstream and upstream from the coordinate origin.
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1.2

0.8

0.4

0

- 0.4

- 2 2
h

t x

Figure 3. Minimal skin friction distribution.
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- 0.4

1 2 3 4 5

p

z

x = - 0.9

x = 0.6

Figure 4. Pressure distributions in the transversal direction.

It is worth mentioning that there is tendency in the pressure distribution to form
a plateau region.

Results of the longitudinal skin friction calculations are presented on ­ gure 2. It
may be concluded that the distortion depth increase leads to the minimum skin
friction diminishing. A limiting depth value exists for which the longitudinal skin
friction equals zero at one surface point.
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0

0.4

- 0.4

1 2 3

V

z

x = 0.9

x = - 0.9

0.2

- 0.2

- 0.6

Figure 5. Vertical velocity distributions.

The results presented in ­ gure 3 illustrate the minimum longitudinal skin friction
dependence on the parameter h. It may be supposed that, for large depth values, a
limiting regime exists for which minimal longitudinal skin friction tends to a ­ nite
value. The distortion height increase leads to a di¬erent tendency. At the same time,
further investigation is needed to arrive at our ­ nal conclusions.

The disturbed ®ow near ­ nite distortions of the form

f(x; z) = 0; if R > 1 and f(x; z) = h cos2( º R=2) for R < 1;

where R = x2 + z2, was also investigated.
In ­ gure 4 the dependence of pressure disturbance is presented as a function of

z for h = 1:5 in the linear and nonlinear case (the solid line corresponds to the
nonlinear case) for di¬erent longitudinal coordinate values. It may be seen that, in
accordance with the aforementioned results, the distortion in®uence is revealed in
the full ®ow ­ eld, due to the ellipticity of the equation for the pressure disturbance.

In ­ gure 5 the vertical velocity distribution is presented in the plane parallel to the
®at plate. It may be seen in fact that outside the in®uence zone the vertical velocity
almost equals zero. This result does not contradict to the conclusion made in x 5.
When the distortion height is not so large, nonlinear e¬ects outside the distortion
are small.

It is worth mentioning that the mathematical model investigated may be used in
a wide class of problems. The results obtained, for example, may be used to estimate
the e¬ectiveness of ®ow control in three-dimensional laminar boundary layers.

The work was done under the ¯nancial help of the Russian Foundation of Basic Research (grant
number 96-01-01537).
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